Unit 4 **Cool-downs**

Dividing Fractions

Click on a title in the list below to scroll directly to that lesson.

- ▶ Lesson 1: Size of Divisor and Size of Quotient
- Lesson 2: Meanings of Division
- Lesson 3: Interpreting Division Situations
- Lesson 4: How Many Groups? (Part 1)
- Lesson 5: How Many Groups? (Part 2)
- Lesson 6: Using Diagrams to Find the Number of Groups
- Lesson 7: What Fraction of a Group?
- Lesson 8: How Much in Each Group? (Part 1)
- Lesson 9: How Much in Each Group? (Part 2)
- ▶ Lesson 10: Dividing by Unit and Non-Unit Fractions
- ▶ Lesson 11: Using an Algorithm to Divide Fractions
- Lesson 12: Fractional Lengths
- ▶ Lesson 13: Rectangles with Fractional Side Lengths
- Lesson 14: Fractional Lengths in Triangles and Prisms
- Lesson 15: Volume of Prisms
- Lesson 16: Solving Problems Involving Fractions

DATE

PERIOD

Unit 4, Lesson 1 **Cool-down**

1.4 Result of Division

Without computing, decide whether the value of each expression is much smaller than 1, close to 1, or much larger than 1.

1. 1,000,001 ÷ 99	4. $100 \div \frac{1}{100}$
2. 3.7 ÷ 4.2	5. 0.006 ÷ 6,000
3. 1 ÷ 835	6. $50 \div 50\frac{1}{4}$

DATE

PERIOD

Unit 4, Lesson 2 **Cool-down**

2.3 Groups on A Field Trip

- 1. During a field trip, 60 students are put into equal-sized groups.
 - a. Describe two ways to interpret $60 \div 5$ in this context.

b. Find the quotient.

- c. Explain what the quotient would mean in each of the two interpretations you described.
- 2. Consider the division expression $7\frac{1}{2} \div 2$. Select **all** multiplication equations that correspond to this division expression.

a.
$$2 \cdot ? = 7\frac{1}{2}$$

b.
$$7\frac{1}{2} \cdot ? = 2$$

NAME	DATE	PERIOD
c. $2 \cdot 7\frac{1}{2} = ?$		
d. $? \cdot 7\frac{1}{2} = 2$		
e. ? • 2 = $7\frac{1}{2}$		

DATE

PERIOD

Unit 4, Lesson 3 Cool-down

3.4 Rice and Beans

- 1. Here are three problems. Select **all** problems that can be solved using division.
 - a. Jada cut 4 pieces of ribbon that were equal in length. She used a total of 5 feet of ribbon. How long, in feet, was each piece of ribbon she cut?
 - b. A chef bought 3 bags of beans. Each bag contains $1\frac{2}{5}$ kilograms of beans. How many kilograms of beans did she buy?
 - c. A printer takes $2\frac{1}{2}$ seconds to print a flyer. It took 75 seconds to print a batch of flyers without stopping. How many flyers were in the batch?
- 2. Andre poured 27 ounces of rice into 6 containers. If all containers have the same amount of rice, how many ounces are in each container?
 - a. Write an equation to represent the situation. Use a "?" to represent the unknown quantity.
 - b. Find the unknown quantity. Show your reasoning.

DATE

PERIOD

Unit 4, Lesson 4 **Cool-down**

4.3 Halves, Thirds, and Sixths

1. The hexagon represents 1 whole.

Draw a pattern-block diagram that represents the equation $4 \cdot \frac{1}{3} = 1\frac{1}{3}$.

- 2. Answer the following questions. If you get stuck, use pattern blocks.
 - a. How many $\frac{1}{2}$ s are in $3\frac{1}{2}$?
 - b. How many $\frac{1}{3}$ s are in $2\frac{2}{3}$?
 - c. How many $\frac{1}{6}$ s are in $\frac{2}{3}$?

DATE

PERIOD

Unit 4, Lesson 5 **Cool-down**

5.4 Bags of Tangerines

A grocery store sells tangerines in $\frac{2}{5}$ kg bags. A customer bought 4 kg of tangerines for a school party. How many bags did he buy?

1. Select all equations that represent the situation.

a. $4 \cdot \frac{2}{5} = ?$ b. $? \cdot \frac{2}{5} = 4$ c. $\frac{2}{5} \div 4 = ?$ d. $4 \div \frac{2}{5} = ?$ e. $? \div \frac{2}{5} = 4$

2. Draw a diagram to represent the situation. Answer the question.

DATE

PERIOD

Unit 4, Lesson 6 **Cool-down**

6.4 How Many in 2?

How many $\frac{3}{4}$ s are in 2?

- 1. Write a multiplication equation and a division equation that can be used to answer the question.
- 2. Draw a tape diagram and answer the question. Use the grid to help you draw, if needed.

DATE

PERIOD

Unit 4, Lesson 7 **Cool-down**

7.4 A Partially Filled Container

There is $\frac{1}{3}$ gallon of water in a 3-gallon container. What fraction of the container is filled?

1. Write a multiplication equation and a division equation to represent the situation.

2. Draw a tape diagram to represent the situation. Then, answer the question.

DATE

PERIOD

Unit 4, Lesson 8 **Cool-down**

8.4 Funding a Camping Trip

Students in a sixth-grade class are raising money for an end-of-year camping trip. So far, they have raised \$240. This is $\frac{2}{5}$ of the cost of the trip. How much does the trip cost?

Write multiplication and division equations and draw a diagram to represent the situation. Then answer the question and show your reasoning.

DATE

PERIOD

Unit 4, Lesson 9 **Cool-down**

9.5 Refilling a Soap Dispenser

Noah fills a soap dispenser from a big bottle that contains $2\frac{1}{3}$ liters of liquid soap. That amount of soap will fill $3\frac{1}{2}$ dispensers. How many liters of soap fit into one dispenser?

Use the diagram below to answer the question. Label all relevant parts of the diagram.

DATE

PERIOD

Unit 4, Lesson 10 Cool-down

10.4 Dividing by $\frac{1}{3}$ and $\frac{3}{5}$

1. Explain or show how you could find $5 \div \frac{1}{3}$ by using the value of $5 \cdot 3$. If needed, use this diagram to support your reasoning.

2. Find $12 \div \frac{3}{5}$. Only use a diagram if necessary. Show your reasoning.

DATE

PERIOD

Unit 4, Lesson 11 **Cool-down**

11.4 Watering A Fraction of House Plants

1. Find the value of $\frac{24}{25} \div \frac{4}{5}$. Show your reasoning.

2. If $\frac{4}{3}$ liters of water are enough to water $\frac{2}{5}$ of the plants in the house, how much water is necessary to water all the plants in the house? Write a multiplication equation and a division equation for the situation, then answer the question. Show your reasoning.

DATE

PERIOD

Unit 4, Lesson 12 **Cool-down**

12.5 Building A Fence

A builder was building a fence. In the morning, he worked for $\frac{2}{5}$ of an hour. In the afternoon, he worked for $\frac{9}{10}$ of an hour. How many times as long as in the morning did he work in the afternoon?

Write a division equation to represent this situation, then answer the question. Show your reasoning. If you get stuck, you can draw a diagram.

DATE

PERIOD

Unit 4, Lesson 13 Cool-down

13.5 Two Frames

Two rectangular picture frames have the same area of 45 square inches but have different side lengths. Frame A has a length of $6\frac{3}{4}$ inches, and Frame B has a length of $7\frac{1}{2}$ inches.

 Without calculating, predict which frame has the shorter width. Explain your reasoning.
Find the width that you predicted to be shorter. Show your reasoning.

DATE

PERIOD

Unit 4, Lesson 14 Cool-down

14.4 Triangles and Cubes

1. A triangle has a base of $3\frac{2}{5}$ inches and an area of $5\frac{1}{10}$ square inches. Find the height of the triangle. Show your reasoning.

- 2. Answer each of the following questions and show your reasoning.
 - a. How many cubes with an edge length of $\frac{1}{3}$ inch are needed to build a cube with an edge length of 1 inch?
- b. What is the volume, in cubic inches, of one cube with an edge length of $\frac{1}{3}$ inch?

DATE

PERIOD

Unit 4, Lesson 15 **Cool-down**

15.4 Storage Box

A storage box has a volume of 56 cubic inches, and the base of the box is 4 inches by 4 inches.

- 1. What is the height of the box?
- 2. Lin's teacher uses the box to store her set of cubes with an edge length of $\frac{1}{2}$ inch. If the box is completely full, how many cubes are in the set?

DATE

PERIOD

Unit 4, Lesson 16 **Cool-down**

16.5 A Box of Pencils

A box of pencils is $5\frac{1}{4}$ inches wide. Seven pencils, laid side by side, take up $2\frac{5}{8}$ inches of the width.

- 1. How many inches of the width of the box 2. All the pencils have the same width. How is not taken up by pencils? Show your reasoning.
 - wide is each pencil? Show your reasoning.